Soil Nitrogen Availability and Plant Genotype Modify the Nutrition Strategies of M. truncatula and the Associated Rhizosphere Microbial Communities
نویسندگان
چکیده
Plant and soil types are usually considered as the two main drivers of the rhizosphere microbial communities. The aim of this work was to study the effect of both N availability and plant genotype on the plant associated rhizosphere microbial communities, in relation to the nutritional strategies of the plant-microbe interactions, for six contrasted Medicago truncatula genotypes. The plants were provided with two different nutrient solutions varying in their nitrate concentrations (0 mM and 10 mM). First, the influence of both nitrogen availability and Medicago truncatula genotype on the genetic structure of the soil bacterial and fungal communities was determined by DNA fingerprint using Automated Ribosomal Intergenic Spacer Analysis (ARISA). Secondly, the different nutritional strategies of the plant-microbe interactions were evaluated using an ecophysiological framework. We observed that nitrogen availability affected rhizosphere bacterial communities only in presence of the plant. Furthermore, we showed that the influence of nitrogen availability on rhizosphere bacterial communities was dependent on the different genotypes of Medicago truncatula. Finally, the nutritional strategies of the plant varied greatly in response to a modification of nitrogen availability. A new conceptual framework was thus developed to study plant-microbe interactions. This framework led to the identification of three contrasted structural and functional adaptive responses of plant-microbe interactions to nitrogen availability.
منابع مشابه
Linking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities
Wetland ecosystems are important reservoirs of biodiversity and significantly contribute to emissions of the greenhouse gases CO2, N2O, and CH4. High anthropogenic nitrogen (N) inputs from agriculture and fossil fuel combustion have been recognized as a severe threat to biodiversity and ecosystem functioning, such as control of greenhouse gas emissions. Therefore, it is important to understand ...
متن کاملThe Effect of Fruit Trees Pruning Waste Biochar on some Soil Biological Properties under Rhizobox Conditions
The pyrolysis of fruit trees Pruning waste to be converted to biochar with microbial inoculation is a strategy improving the biological properties in calcareous soils. In order to investigate the biochar effect on some soil biological properties of the soil in the presence of microorganisms, a factorial experiment was carried out in a completely randomized design in the rhizobox under greenhous...
متن کاملPlant Phylogeny and Life History Shape Rhizosphere Bacterial Microbiome of Summer Annuals in an Agricultural Field
Rhizosphere microbial communities are critically important for soil nitrogen cycling and plant productivity. There is evidence that plant species and genotypes select distinct rhizosphere communities, however, knowledge of the drivers and extent of this variation remains limited. We grew 11 annual species and 11 maize (Zea mays subsp. mays) inbred lines in a common garden experiment to assess t...
متن کاملCOMPOSITION AND FUNCTION OF THE MICROBIAL COMMUNITY RELATED WITH THE NITROGEN CYCLING ON THE POTATO RHIZOSPHERE Composición y función de la comunidad microbiana relacionada con el ciclaje de nitrógeno en la rizosfera de Solanum tuberosum (BAHUIN) grupo phureja
In the S. tuberosum group phureja crops, mineral fertilizer and organic amendments are applied to meet the plants’ nutritional demands, however the effect of such practices on the associated rizospheric microbial communities are still unknown. Nitrogen plays an important role in agricultural production, and a great diversity of microorganisms regulates its transformation in the soil, affecting ...
متن کاملاثرهای ریزوسفری گندم (Triticum aestivum L.) بر قابلیت استفاده فسفر و برخی از ویژگیهای بیولوژیک در خاکهای آهکی دشت شهرکرد
The chemical conditions of the rhizosphere are known to considerably differ from those of the bulk soil, as a consequence of a range of processes that are induced either directly by the activity of plant roots or by the activity of rhizosphere microflora. Plant species have involved various adaptive strategies to acquire P from soil pools. Therefore, the objective of this research was to evalua...
متن کامل